A Ru–carbene complex with a metallacycle involving a 1,8-naphthylidine framework

Takashi Tomon,^{ab} Dai Ooyama,^c Tohru Wada,^{ab} Kazushi Shiren^b and Koji Tanaka^{*ab}

^a Department of Structural Molecular Science, Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan

^b Institute for Molecular Science and CREST, Japan Science and Technology Corporation (JST), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan

^c Faculty of Education, Fukushima University, Kanayagawa, Fukushima 960-1296, Japan

Received (in Cambridge, UK) 30th January 2001, Accepted 2nd May 2001 First published as an Advance Article on the web 25th May 2001

The reaction of $[Ru(bpy)_2(napy-\kappa^2 N, N')](PF_6)_2$ [1](PF₆)₂ (napy = 1,8-naphthyridine) with propiolic acid yielded a Ru-carbene complex with a five-membered metallacycle involving a 1,8-naphthylidine framework.

Reactions of transition metal complexes with terminal alkynes have been utilized to prepare vinylidene complexes,¹ which are characterized by the electrophilicity of the α carbon. In fact, vinylidene-metal complexes are converted to alkoxy-alkyl carbene complexes by reaction with alcohols.² We have reported that the non-bonded nitrogen of napy- κN of [Ru- $(bpy)_2(napy-\kappa N)(CO)]^{2+}$ attacks the carbonyl carbon to form a five-membered metallacycle upon one-electron reduction of the napy moiety (napy = 1,8-naphthyridine).³ Moreover, [Ru- $(bpy)_2(napy-\kappa^2N,N')]^{2+}$ exists in equilibrium with $[Ru(bpy)_2-(napy-\kappa N)(solvent)]^{2+}$ in polar solutions.⁴ Thus $[Ru(bpy)_2-(napy-\kappa N)(solvent)]^{2+}$ $(napy-\kappa^2 N, N')$]²⁺ readily forms a 1:1 adduct with various substrates upon opening of the chelate ring. The reaction of $[Ru(bpy)_2(napy-\kappa^2 N, N')](PF_6)_2$ [1](PF₆)₂ with propiolic acid in alcohol was conducted to elucidate whether the non-bonded nitrogen of napy or alcohol attacks the α carbon of the vinylidene moiety. Here we report the isolation of a Rucarbene complex with a metallacycle $2a^{2+}$ (eqn. 1), and the reversible conversion between $2a^{2+}$ and the vinyl complex 3^+ upon acid-base treatment.

A CH₃OH/H₂O (3:2 v/v) solution containing [1](PF₆)₂ (60 mg, 72 µmol) and HCCC(O)OH (7 mg, 100 µmol) was refluxed for 2 h, and [**2a**](PF₆)₂ was obtained from the solution (eqn. 1). Recrystallization of the crude product from CH₃CN/CH₃OH (4:1 v/v) gave single crystals of [**2a**](PF₆)₂·CH₃CN in 64% yield.[†] The similar reaction between [1](SbF₆)₂ and HCCC(O)OH in C₂H₅OH/H₂O (4:1 v/v) under similar reaction conditions afforded [**2b**](SbF₆)₂ in 56% yield (eqn. 1).[†]

conditions afforded [2b](SbF₆)₂ in 56% yield (eqn. 1).[†] The molecular structure of $2a^{2+}$ determined by X-ray diffraction analysis is shown in Fig. 1.⁵ The ruthenium atom of $2a^{2+}$ has octahedral geometry with four nitrogen atoms of two byy ligands, one nitrogen from napy and one carbon of the CCH₃ group. The characteristic features of $2a^{2+}$ are the C–N bond formation between the CCH₃ group and one nitrogen of napy, and the attachment of the CH₃O group to the 2-position of the napy moiety. The resultant five-membered metallacycle consisting of Ru, N(1), C(11), N(2), and C(2) atoms in an almost planar structure, and the sum of the bond angles around the fivemembered ring is almost 360°. Despite the attachment of CH₃O to the 2-positon of the napy moiety, the resultant ligand still maintains the planar structure in **2a**²⁺. As a result, the napy moiety and the five-membered metallacycle are co-planar. The Ru–N(4) (2.156(9) Å) bond *trans* to Ru–C(2) is substantially longer than the other Ru–N bonds of **2a**²⁺ (2.03(1)–2.08(1) Å), suggesting a strong *trans* effect of the carbene ligand. The Ru– C(2) bond distance (1.93(1) Å) is in the expected range of hexacoordinated ruthenium carbene bonds (1.941–1.98 Å),⁶ and the bond length is longer than those expected for penta-coordinated ruthenium carbene complexes (1.810–1.861 Å).⁷ The ¹³C NMR spectrum of **2a**²⁺ also showed the α -carbon signal of the Ru– CCH₃ group at δ 293 as a singlet, similar to most Ru carbene complexes.^{2,6 α -c,⁷e,f</sub>}

www.rsc.org/chemcomm

The complex $[2a](PF_6)_2$ was stable in CH₃OH/(CH₃)₂CO and H₂O/(CH₃)₂CO. On the other hand, the methyl signals of the CH₃O and the Ru–CCH₃ groups of $2a^{2+}$ (δ 2.95 and 2.85, respectively) gradually weakened with time in the ¹H NMR spectrum in (CD₃)CO/CD₃OD (1:1 v/v). The Ru–CCH₃ signal vanished in 30 min at ambient tenperature, and the CH₃O one disappeared after 12 h at 65 °C. At the same time, the methyl signal of free methanol appeared at δ 3.33. Moreover, $2a^{2+}$ was

Fig. 1 An ORTEP view of complex $2a^{2+}$. Selected intramolecualr distances (Å): Ru(1)–N(1), 2.03(1); Ru(1)–N(3), 2.061(9); Ru(1)–N(4), 2.156(9); Ru(1)–N(5), 2.08(1); Ru(1)–N(6), 2.052(9); Ru(1)–C(2), 1.93(1); C(1)–C(2), 1.53(2); C(2)–N(2), 1.41(1); C(4)–O(1), 1.40(2); C(3)–O(1), 1.40(2). Selected bond angles (degrees): N(1)–Ru(1)–C(2), 79.8(5); Ru(1)–C(2)–C(1), 127.1(9); Ru(1)–C(2)–N(2), 116.3(8); C(1)–C(2)–N(2), 117(1); C(2)–N(2)–C(4), 123(1); C(2)–N(2)–C(11), 114(1); C(4)–N(2)–C(11), 122(1); N(2)–C(4)–O(1), 112(1); N(2)–C(4)–C(5), 112(1); C(5)–C(4)–O(1), 111(1).

converted to $2b^{2+}$ in C₂H₅OH/(CH₃)₂CO for 1 week at room temperature. Thus, the Ru-CCH₃ and CH₃O groups of 2a²⁺ underwent H/D exchange and substitution, respectively, by CD₃OD (Scheme 1). The rate of the H/D exchange was faster than substitution by CD₃OD, and the H/D exchange reaction was greatly enhanced in D_2O , since the Ru–CCH₃ signal (δ 2.78) disappeared after 5 min in the ¹H NMR spectrum of 2a²⁺ in $(CD_3)_2CO/D_2O$ (10:1 v/v). On the other hand, treatment of $[2a](PF_6)_2$ with an equiv. amount of aqueous NaOH in CD₂Cl₂ caused the appearance of new signals at δ 4.96 and 2.99, and δ 92.5 in the ¹H NMR and ¹³C NMR spectra, respectively, and the proton and carbon signals of the Ru-CCH₃ group of $2a^{2+}$ completely disappeared. The addition of 1 equiv. of HPF_6 to the solution regenerated the ¹H NMR and ¹³C NMR spectra of **2a**²⁺. Such complete recovery of $2a^{2+}$ in the cycle of the acid-base treatments without producing CH₃OH is indicative of the reversible conversion between the carbene complex $2a^{2+}$ and the vinyl complex 3^+ without opening the five-membered metallacycle (Scheme 1).

The carbene complex $2a^{2+}$ is probably formed *via* a Ruvinylidene intermediate formed by the reaction of 1^{2+} with HCCC(O)OH, though it is not clear whether the decarboxylation takes place before or after the formation of the Ruvinylidene framework. Although vinylidene complexes react with alcohols to produce a variety of alkoxy-alkyl carbene complexes, the α -carbon of the carbene moiety of $2a^{2+}$ linked exclusively with the non-bonded nitrogen of napy in MeOH. Such novel N–C bond formation must be assisted by the attachment of the CH₃O⁻ group at the 2-position of the napy ligand, since intra-molecular attack of the non-bonded nitrogen of napy to the carbonyl carbon of $[Ru(bpy)_2(napy-\kappa N)(CO)]^{2+}$ is initiated by the ligand localized one-electron reduction.

Notes and references

[†] Spectroscopic data for [2a](PF₆)₂·CH₃CN: ¹H NMR (500 MHz, CD₃CN): δ 8.52–6.33 (m, 22H, aromatic H), 2.84 (s, 3H, OCH₃), 2.68 (s, 3H, CCH₃). ¹³C NMR (270 MHz, CD₃CN): δ293.6 (Ru=CCH₃), 157.5-119.0 (aromatic C), 82.8 (OCH₃), 50.2 (Ru=CCH₃). IR (KBr): 2252, 1659, 1605 cm⁻¹. ESI-MS: m/z = 301 (M²⁺). Anal. Calcd. for C₃₃H₃₁N₇OF₁₂P₂Ru: C, 42.50; H, 3.35; N,10.51. Found: C, 42.31; H, 3.37; N, 10.39%. [2b](SbF_6)_2: 1H NMR (500 MHz, CD₃CN): δ 8.50–6.45 (m, 22H, aromatic H), 3.76 and 3.59 (q, 2H, OCH2CH3), 2.69 (s, 3H, CCH3), 1.28 (t, 3H, OCH2CH3). 13C NMR (270 MHz, CD₃CN): δ 294.7 (Ru=CCH₃), 157.3-121.1 (aromatic C), 81.8 (OCH₂CH₃), 61.8 (Ru=CCH₃), 15.4 (OCH₂CH₃). IR (KBr): 1653, 1605 cm⁻¹. ESI-MS: m/z = 308 (M²⁺). Anal. Calcd. for C₃₂H₃₀N₆OF₁₂Sb₂Ru: C, 35.35; H, 2.78; N, 7.73. Found: C, 35.15; H, 2.90; N, 7.45%. [3](PF₆): ¹H NMR (500 MHz, CD₂Cl₂): 89.12-5.84 (m, 22H, aromatic H), 4.96 and 2.99 (s, 2H, C=CH₂), 2.54 (s, 3H, OCH₃). ¹³C NMR (270 MHz, CD₂Cl₂): δ184.6 (C=CH₂), 157.2-114.6 (aromatic C), 92.5 (C=CH₂), 79.9 (OCH₃). ESI-MS: $m/z = 601 (M^+).$

Crystal data for [**2a**](PF₆)₂·CH₃CN: C₃₃H₃₁F₁₂N₇OP₂Ru, M = 932.65, orthorhombic, space group *Pna*2₁ (no. 33), a = 12.495(2), b = 19.134(4), c = 15.602(3) Å, V = 3729(1) Å³, T = 296 K, Z = 4, $D_c = 1.661$ g cm⁻³, μ (Mo-K α) = 6.06 cm⁻¹, 4889 reflections measured, 4778 unique reflections, 2566 observed reflections [$I > 3.00\sigma(I)$]. Final R = 0.051 and Rw = 0.071. CCDC reference number 157684. See http://www.rsc.org/ suppdata/cc/b1/b101045j/ for crystallographic data in .CIF or other electronic format.

- 1 M. C. Puerta and P. Valerga, Coord. Chem. Rev., 1999, 193-195, 977.
- 2 M. P. Gamasa, J. Gimeno, B. M. Martín-Vaca, J. Borge, S. García-Granda and E. Perez-Carreño, *Organometallics*, 1994, **13**, 4045.
- 3 H. Nakajima and K. Tanaka, Chem. Lett., 1995, 891.
- 4 H. Nakajima, H. Nagao and K. Tanaka, J. Chem. Soc., Dalton Trans., 1996, 1405.
- 5 Disorder was found for one of two PF_6^- ions in the crystal structure of $[2a](PF_6)_2$ ·CH₃CN.
- 6 (a) V. W. W. Yam, B. W. K. Chu and K. K. Cheung, *Chem. Commun.*, 1998, 2261; (b) J. Yang, J. Yin, K. A. Abboud and W. M. Jones, *Organometallics*, 1994, 13, 971; (c) D. Pilette, K. Ouzzine, H. L. Bozec and P. H. Dixneuf, *Organometallics*, 1992, 11, 809; (d) L. M. Boyd, G. R. Clark and W. R. Roper, *J. Organomet. Chem.*, 1990, 397, 209; (e) G. J. Irvine, C. E. F. Rickard, W. R. Roper and L. J. Wright, *J. Organomet. Chem.*, 1990, 387, C5.
- 7 (a) L. Jafarpour, E. D. Stevens and S. P. Nolan, J. Organomet. Chem., 2000, 606, 49; (b) P. A. Schaaf, R. Kolly, H. J. Kirner, F. Rime, A. Mühlebach and A. Hafner, J. Organomet. Chem., 2000, 606, 65; (c) P. Hofmann, M. A. O. Volland, S. M. Hansen, F. Eisenträger, J. H. Gross and K. Stengel, J. Organomet. Chem., 2000, 606, 88; (d) S. Chang, L. Jones II, C. Wang, L. M. Henling and R. H. Grubbs, Organometallics, 1998, 17, 3460; (e) P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1996, 118, 100; (f) Z. Wu, S. T. Nguyen, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1995, 117, 5503.