A Ru–carbene complex with a metallacycle involving a 1,8-naphthylidine framework

Takashi Tomon,*ab* **Dai Ooyama,***c* **Tohru Wada,***ab* **Kazushi Shiren***b* **and Koji Tanaka****ab*

a Department of Structural Molecular Science, Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan

b Institute for Molecular Science and CREST, Japan Science and Technology Corporation (JST), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan

c Faculty of Education, Fukushima University, Kanayagawa, Fukushima 960-1296, Japan

Received (in Cambridge, UK) 30th January 2001, Accepted 2nd May 2001 First published as an Advance Article on the web 25th May 2001

The reaction of $\left[\text{Ru(bpy)}_{2}\right]$ (napy-k²*N*,*N'*)](PF₆)₂ $\left[1\right]$ (PF₆)₂ **(napy = 1,8-naphthyridine) with propiolic acid yielded a Ru–carbene complex with a five-membered metallacycle involving a 1,8-naphthylidine framework.**

Reactions of transition metal complexes with terminal alkynes have been utilized to prepare vinylidene complexes,¹ which are characterized by the electrophilicity of the α carbon. In fact, vinylidene–metal complexes are converted to alkoxy–alkyl carbene complexes by reaction with alcohols.2 We have reported that the non-bonded nitrogen of napy*-*k*N* of [Ru- $(bpy)_2$ (napy- kN)(CO)]²⁺ attacks the carbonyl carbon to form a five-membered metallacycle upon one-electron reduction of the napy moiety (napy = 1,8-naphthyridine).3 Moreover, [Ru- $(\text{bpy})_2(\text{napy-k}^2 N, N^2)$]²⁺ exists in equilibrium with $[\text{Ru(bpy})_2$ - $(napy-kN)(solvent)²⁺$ in polar solutions.⁴ Thus $[Ru(bpy)₂$ - $(\text{napy-}\kappa^2 N, N')$ ²⁺ readily forms a 1:1 adduct with various substrates upon opening of the chelate ring. The reaction of [Ru(bpy)2(napy*-*k2*N,N*A)](PF6)2 [**1**](PF6)2 with propiolic acid in alcohol was conducted to elucidate whether the non-bonded nitrogen of napy or alcohol attacks the α carbon of the vinylidene moiety. Here we report the isolation of a Ru– carbene complex with a metallacycle **2a**2+ (eqn. 1), and the reversible conversion between $2a^2$ ⁺ and the vinyl complex 3 ⁺ upon acid–base treatment.

A CH₃OH/H₂O (3:2 v/v) solution containing $[1](PF_6)$ ₂ (60) mg, 72 μ mol) and HCCC(O)OH (7 mg, 100 μ mol) was refluxed for 2 h, and $[2a](PF_6)$ ₂ was obtained from the solution (eqn. 1). Recrystallization of the crude product from CH3CN/CH3OH (4:1 v/v) gave single crystals of $[2a](PF_6)_2 \text{ } CH_3 \text{ } CN$ in 64% yield.[†] The similar reaction between $[1](SbF_6)_2$ and The similar reaction between $[1](SbF_6)$ ₂ and $HCCC(O)OH$ in C_2H_5OH/H_2O (4:1 v/v) under similar reaction conditions afforded $[2b]$ (SbF₆)₂ in 56% yield (eqn. 1).[†]

The molecular structure of **2a2+** determined by X-ray diffraction analysis is shown in Fig. 1.5 The ruthenium atom of **2a2+** has octahedral geometry with four nitrogen atoms of two bpy ligands, one nitrogen from napy and one carbon of the CCH3 group. The characteristic features of **2a2+** are the C–N bond formation between the CCH₃ group and one nitrogen of napy, and the attachment of the $CH₃O$ group to the 2-position of the napy moiety. The resultant five-membered metallacycle consisting of Ru, $N(1)$, $C(11)$, $N(2)$, and $C(2)$ atoms in an almost planar structure, and the sum of the bond angles around the fivemembered ring is almost 360° . Despite the attachment of CH_3O to the 2-positon of the napy moiety, the resultant ligand still maintains the planar structure in **2a2+**. As a result, the napy moiety and the five-membered metallacycle are co-planar. The Ru–N(4) (2.156(9) Å) bond *trans* to Ru–C(2) is substantially longer than the other Ru–N bonds of **2a2+** (2.03(1)–2.08(1) Å), suggesting a strong *trans* effect of the carbene ligand. The Ru– $C(2)$ bond distance $(1.93(1)$ Å) is in the expected range of hexacoordinated ruthenium carbene bonds $(1.941-1.98 \text{ Å})$,⁶ and the bond length is longer than those expected for penta-coordinated ruthenium carbene complexes $(1.8\overline{1}0 - 1.861\overline{A})$.⁷ The ¹³C NMR spectrum of $2a^{2+}$ also showed the α -carbon signal of the Ru– CCH₃ group at δ 293 as a singlet, similar to most Ru carbene complexes.2,6*a–c*,7*e,f*

www.rsc.org/chemcomm Communication CHEMCOMM

municatio

www.rsc.org/chemcomm

The complex $[2a](PF_6)_2$ was stable in $CH_3OH/(CH_3)_2CO$ and $H_2O/(CH_3)_2CO$. On the other hand, the methyl signals of the CH₃O and the Ru–CCH₃ groups of $2a^{2+}$ (δ 2.95 and 2.85, respectively) gradually weakened with time in the 1H NMR spectrum in $(CD_3)CO/CD_3OD$ (1:1 v/v). The Ru–CCH₃ signal vanished in 30 min at ambient tenperature, and the $CH₃O$ one disappeared after 12 h at 65 °C. At the same time, the methyl signal of free methanol appeared at δ 3.33. Moreover, $2a^{2+}$ was

Fig. 1 An ORTEP view of complex **2a**2+. Selected intramolecualr distances (A) : Ru(1)–N(1), 2.03(1); Ru(1)–N(3), 2.061(9); Ru(1)–N(4), 2.156(9); Ru(1)–N(5), 2.08(1); Ru(1)–N(6), 2.052(9); Ru(1)–C(2), 1.93(1); C(1)– C(2), 1.53(2); C(2)–N(2), 1.41(1); C(4)–O(1), 1.40(2); C(3)–O(1), 1.40(2). Selected bond angles (degrees): $N(1)$ – $Ru(1)$ – $C(2)$, 79.8(5); $Ru(1)$ – $C(2)$ – C(1), 127.1(9); Ru(1)–C(2)–N(2), 116.3(8); C(1)–C(2)–N(2), 117(1); C(2)– N(2)–C(4), 123(1); C(2)–N(2)–C(11), 114(1); C(4)–N(2)–C(11), 122(1); $N(2) - C(4) - O(1)$, 112(1); $N(2) - C(4) - C(5)$, 112(1); $C(5) - C(4) - O(1)$, $111(1)$.

converted to $2b^{2+}$ in $C_2H_5OH/(CH_3)_2CO$ for 1 week at room temperature. Thus, the Ru–CCH₃ and CH₃O groups of $2a^{2+}$ underwent H/D exchange and substitution, respectively, by $CD₃OD$ (Scheme 1). The rate of the H/D exchange was faster than substitution by CD_3OD , and the H/D exchange reaction was greatly enhanced in D₂O, since the Ru–CCH₃ signal (δ 2.78) disappeared after 5 min in the 1H NMR spectrum of **2a2+** in (CD_3) ₂CO/D₂O (10:1 v/v). On the other hand, treatment of $[2a](PF_6)_2$ with an equiv. amount of aqueous NaOH in CD_2Cl_2 caused the appearance of new signals at δ 4.96 and 2.99, and δ 92.5 in the 1H NMR and 13C NMR spectra, respectively, and the proton and carbon signals of the $Ru-CCH_3$ group of $2a^{2+}$ completely disappeared. The addition of 1 equiv. of HPF_6 to the solution regenerated the 1H NMR and 13C NMR spectra of **2a2+**. Such complete recovery of $2a^{2+}$ in the cycle of the acid–base treatments without producing CH3OH is indicative of the reversible conversion between the carbene complex **2a2+** and the vinyl complex **3**+ without opening the five-membered metallacycle (Scheme 1).

The carbene complex **2a2+** is probably formed *via* a Ru– vinylidene intermediate formed by the reaction of **1**2+ with HCCC(O)OH, though it is not clear whether the decarboxylation takes place before or after the formation of the Ru– vinylidene framework. Although vinylidene complexes react with alcohols to produce a variety of alkoxy–alkyl carbene complexes, the α -carbon of the carbene moiety of $2a^{2+}$ linked exclusively with the non-bonded nitrogen of napy in MeOH. Such novel N–C bond formation must be assisted by the attachment of the CH_3O ⁻ group at the 2-position of the napy ligand, since intra-molecular attack of the non-bonded nitrogen

of napy to the carbonyl carbon of [Ru(bpy)2(napy*-*k*N*)(CO)]2+ is initiated by the ligand localized one-electron reduction.

Notes and references

† *Spectroscopic data* for [**2a**](PF₆)₂·CH₃CN: ¹H NMR (500 MHz, CD₃CN): δ 8.52–6.33 (m, 22H, aromatic H), 2.84 (s, 3H, OCH₃), 2.68 (s, 3H, CCH₃). ¹³C NMR (270 MHz, CD₃CN): δ293.6 (Ru=CCH₃), 157.5–119.0 (aromatic C), 82.8 (OCH₃), 50.2 (Ru=CCH₃). IR (KBr): 2252, 1659, 1605 cm⁻¹. ESI-MS: $m/z = 301 (M²⁺)$. Anal. Calcd. for C₃₃H₃₁N₇OF₁₂P₂Ru: C, 42.50; H, 3.35; N,10.51. Found: C, 42.31; H, 3.37; N, 10.39%. [2b](SbF₆₎₂: ¹H NMR (500 MHz, CD₃CN): δ 8.50–6.45 (m, 22H, aromatic H), 3.76 and 3.59 (q, 2H, OCH₂CH₃), 2.69 (s, 3H, CCH₃), 1.28 (t, 3H, OCH₂CH₃). ¹³C NMR (270 MHz, CD₃CN): δ 294.7 (Ru=CCH₃), 157.3–121.1 (aromatic C), 81.8 (OCH₂CH₃), 61.8 (Ru=CCH₃), 15.4 (OCH₂CH₃). IR (KBr): 1653, 1605 cm⁻¹. ESI-MS: $m/z = 308$ (M²⁺). Anal. Calcd. for C₃₂H₃₀N₆OF₁₂Sb₂Ru: C, 35.35; H, 2.78; N, 7.73. Found: C, 35.15; H, 2.90; N, 7.45%. [**3**](PF6): 1H NMR (500 MHz, CD_2Cl_2): δ 9.12–5.84 (m, 22H, aromatic H), 4.96 and 2.99 $(s, 2H, C=CH_2)$, 2.54 $(s, 3H, OCH_3)$. ¹³C NMR (270 MHz, CD₂Cl₂): δ 184.6 (*C*=CH₂), 157.2–114.6 (aromatic C), 92.5 (C=CH₂), 79.9 (OCH₃). ESI-MS: $m/z = 601$ (M⁺).

Crystal data for $[2a](PF_6)_2$ ·CH₃CN: C₃₃H₃₁F₁₂N₇OP₂Ru, *M* = 932.65, orthorhombic, space group $Pna2_1$ (no. 33), $a = 12.495(2), b = 19.134(4)$, $c = 15.602(3)$ Å, $V = 3729(1)$ Å³, $T = 296$ K, $Z = 4$, $D_c = 1.661$ g cm⁻³, μ (Mo-K α) = 6.06 cm⁻¹, 4889 reflections measured, 4778 unique reflections, 2566 observed reflections $[I > 3.00\sigma(I)]$. Final $R = 0.051$ and *Rw* = 0.071. CCDC reference number 157684. See http://www.rsc.org/ suppdata/cc/b1/b101045j/ for crystallographic data in .CIF or other electronic format.

- 1 M. C. Puerta and P. Valerga, *Coord. Chem. Rev.*, 1999, **193**–**195**, 977.
- 2 M. P. Gamasa, J. Gimeno, B. M. Martín-Vaca, J. Borge, S. García-Granda and E. Perez-Carreño, *Organometallics*, 1994, **13**, 4045.
- 3 H. Nakajima and K. Tanaka, *Chem. Lett.*, 1995, 891.
- 4 H. Nakajima, H. Nagao and K. Tanaka, *J. Chem. Soc., Dalton Trans.*, 1996, 1405.
- 5 Disorder was found for one of two PF_6 ⁻ ions in the crystal structure of $[2a](PF_6)_2$ ·CH₃CN.
- 6 (*a*) V. W. W. Yam, B. W. K. Chu and K. K. Cheung, *Chem. Commun.*, 1998, 2261; (*b*) J. Yang, J. Yin, K. A. Abboud and W. M. Jones, *Organometallics*, 1994, **13**, 971; (*c*) D. Pilette, K. Ouzzine, H. L. Bozec and P. H. Dixneuf, *Organometallics*, 1992, **11**, 809; (*d*) L. M. Boyd, G. R. Clark and W. R. Roper, *J. Organomet. Chem.*, 1990, **397**, 209; (*e*) G. J. Irvine, C. E. F. Rickard, W. R. Roper and L. J. Wright, *J. Organomet. Chem.*, 1990, **387**, C5.
- 7 (*a*) L. Jafarpour, E. D. Stevens and S. P. Nolan, *J. Organomet. Chem.*, 2000, **606**, 49; (*b*) P. A. Schaaf, R. Kolly, H. J. Kirner, F. Rime, A. Mühlebach and A. Hafner, *J. Organomet. Chem.*, 2000, **606**, 65; (*c*) P. Hofmann, M. A. O. Volland, S. M. Hansen, F. Eisenträger, J. H. Gross and K. Stengel, *J. Organomet. Chem.*, 2000, **606**, 88; (*d*) S. Chang, L. Jones II, C. Wang, L. M. Henling and R. H. Grubbs, *Organometallics*, 1998, **17**, 3460; (*e*) P. Schwab, R. H. Grubbs and J. W. Ziller, *J. Am. Chem. Soc.*, 1996, **118**, 100; (*f*) Z. Wu, S. T. Nguyen, R. H. Grubbs and J. W. Ziller, *J. Am. Chem. Soc.*, 1995, **117**, 5503.